Integral dari $$$\frac{1}{\sin^{2}{\left(2 x \right)}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{1}{\sin^{2}{\left(2 x \right)}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx$$$.

Solusi

Misalkan $$$u=2 x$$$.

Kemudian $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{2}$$$.

Integral tersebut dapat ditulis ulang sebagai

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 \sin^{2}{\left(u \right)}} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$:

$${\color{red}{\int{\frac{1}{2 \sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}{2}\right)}}$$

Tulis ulang integran dalam bentuk kosekan:

$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{2}$$

Integral dari $$$\csc^{2}{\left(u \right)}$$$ adalah $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{2}$$

Ingat bahwa $$$u=2 x$$$:

$$- \frac{\cot{\left({\color{red}{u}} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

Oleh karena itu,

$$\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x} = - \frac{\cot{\left(2 x \right)}}{2}$$

Tambahkan konstanta integrasi:

$$\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x} = - \frac{\cot{\left(2 x \right)}}{2}+C$$

Jawaban

$$$\int \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx = - \frac{\cot{\left(2 x \right)}}{2} + C$$$A


Please try a new game Rotatly