Intégrale de $$$\frac{1}{\sin^{2}{\left(2 x \right)}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx$$$.
Solution
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
Ainsi,
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 \sin^{2}{\left(u \right)}} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$ :
$${\color{red}{\int{\frac{1}{2 \sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}{2}\right)}}$$
Réécrivez l'intégrande en fonction de la cosécante:
$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{2}$$
L’intégrale de $$$\csc^{2}{\left(u \right)}$$$ est $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$ :
$$\frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{2}$$
Rappelons que $$$u=2 x$$$ :
$$- \frac{\cot{\left({\color{red}{u}} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Par conséquent,
$$\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x} = - \frac{\cot{\left(2 x \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x} = - \frac{\cot{\left(2 x \right)}}{2}+C$$
Réponse
$$$\int \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx = - \frac{\cot{\left(2 x \right)}}{2} + C$$$A