Integrale di $$$\frac{1}{\sin^{2}{\left(2 x \right)}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{\sin^{2}{\left(2 x \right)}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx$$$.

Soluzione

Sia $$$u=2 x$$$.

Quindi $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{2}$$$.

L'integrale può essere riscritto come

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 \sin^{2}{\left(u \right)}} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$:

$${\color{red}{\int{\frac{1}{2 \sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}{2}\right)}}$$

Riesprimi l'integrando in termini della cosecante:

$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{2}$$

L'integrale di $$$\csc^{2}{\left(u \right)}$$$ è $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{2}$$

Ricordiamo che $$$u=2 x$$$:

$$- \frac{\cot{\left({\color{red}{u}} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

Pertanto,

$$\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x} = - \frac{\cot{\left(2 x \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{\sin^{2}{\left(2 x \right)}} d x} = - \frac{\cot{\left(2 x \right)}}{2}+C$$

Risposta

$$$\int \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx = - \frac{\cot{\left(2 x \right)}}{2} + C$$$A


Please try a new game Rotatly