$$$\frac{8 x}{4 x^{2} - 5}$$$ 的积分
您的输入
求$$$\int \frac{8 x}{4 x^{2} - 5}\, dx$$$。
解答
设$$$u=4 x^{2} - 5$$$。
则$$$du=\left(4 x^{2} - 5\right)^{\prime }dx = 8 x dx$$$ (步骤见»),并有$$$x dx = \frac{du}{8}$$$。
因此,
$${\color{red}{\int{\frac{8 x}{4 x^{2} - 5} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=4 x^{2} - 5$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(4 x^{2} - 5\right)}}}\right| \right)}$$
因此,
$$\int{\frac{8 x}{4 x^{2} - 5} d x} = \ln{\left(\left|{4 x^{2} - 5}\right| \right)}$$
加上积分常数:
$$\int{\frac{8 x}{4 x^{2} - 5} d x} = \ln{\left(\left|{4 x^{2} - 5}\right| \right)}+C$$
答案
$$$\int \frac{8 x}{4 x^{2} - 5}\, dx = \ln\left(\left|{4 x^{2} - 5}\right|\right) + C$$$A