Integrale di $$$\frac{8 x}{4 x^{2} - 5}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{8 x}{4 x^{2} - 5}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{8 x}{4 x^{2} - 5}\, dx$$$.

Soluzione

Sia $$$u=4 x^{2} - 5$$$.

Quindi $$$du=\left(4 x^{2} - 5\right)^{\prime }dx = 8 x dx$$$ (i passaggi si possono vedere »), e si ha che $$$x dx = \frac{du}{8}$$$.

Quindi,

$${\color{red}{\int{\frac{8 x}{4 x^{2} - 5} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Ricordiamo che $$$u=4 x^{2} - 5$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(4 x^{2} - 5\right)}}}\right| \right)}$$

Pertanto,

$$\int{\frac{8 x}{4 x^{2} - 5} d x} = \ln{\left(\left|{4 x^{2} - 5}\right| \right)}$$

Aggiungi la costante di integrazione:

$$\int{\frac{8 x}{4 x^{2} - 5} d x} = \ln{\left(\left|{4 x^{2} - 5}\right| \right)}+C$$

Risposta

$$$\int \frac{8 x}{4 x^{2} - 5}\, dx = \ln\left(\left|{4 x^{2} - 5}\right|\right) + C$$$A


Please try a new game Rotatly