Intégrale de $$$\frac{8 x}{4 x^{2} - 5}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{8 x}{4 x^{2} - 5}\, dx$$$.
Solution
Soit $$$u=4 x^{2} - 5$$$.
Alors $$$du=\left(4 x^{2} - 5\right)^{\prime }dx = 8 x dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x dx = \frac{du}{8}$$$.
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{\frac{8 x}{4 x^{2} - 5} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=4 x^{2} - 5$$$ :
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(4 x^{2} - 5\right)}}}\right| \right)}$$
Par conséquent,
$$\int{\frac{8 x}{4 x^{2} - 5} d x} = \ln{\left(\left|{4 x^{2} - 5}\right| \right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{8 x}{4 x^{2} - 5} d x} = \ln{\left(\left|{4 x^{2} - 5}\right| \right)}+C$$
Réponse
$$$\int \frac{8 x}{4 x^{2} - 5}\, dx = \ln\left(\left|{4 x^{2} - 5}\right|\right) + C$$$A