判断 $$$\frac{4691779 x^{2}}{100000} - \frac{7 x}{4} - \frac{11}{100000} = 0$$$ 所表示的圆锥曲线
您的输入
判断并求出圆锥曲线$$$\frac{4691779 x^{2}}{100000} - \frac{7 x}{4} - \frac{11}{100000} = 0$$$的性质。
解答
圆锥曲线的一般方程为 $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$。
在我们的情况下,$$$A = \frac{4691779}{100000}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = - \frac{7}{4}$$$, $$$E = 0$$$, $$$F = - \frac{11}{100000}$$$。
圆锥曲线的判别式为 $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$。
接下来,$$$B^{2} - 4 A C = 0$$$。
由于$$$\Delta = 0$$$,这是一条退化的圆锥曲线。
由于$$$B^{2} - 4 A C = 0$$$,该方程表示两条平行直线。
答案
$$$\frac{4691779 x^{2}}{100000} - \frac{7 x}{4} - \frac{11}{100000} = 0$$$A 表示一对直线 $$$x = - \frac{-87500 + 3 \sqrt{856428841}}{4691779}$$$, $$$x = \frac{87500 + 3 \sqrt{856428841}}{4691779}$$$A。
一般式:$$$\frac{4691779 x^{2}}{100000} - \frac{7 x}{4} - \frac{11}{100000} = 0$$$A。
因式分解形式:$$$\left(4691779 x - 87500 + 3 \sqrt{856428841}\right) \left(4691779 x - 3 \sqrt{856428841} - 87500\right) = 0$$$A。
图像:参见 图形计算器。