Förenkla $$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}$$$
Relaterad kalkylator: Kalkylator för sanningsvärdestabeller
Din inmatning
Förenkla det booleska uttrycket $$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}.$$$
Lösning
Använd den kommutativa lagen:
$${\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}\right)} = {\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A\right)}$$Använd idempotenslagen $$$x \cdot x = x$$$ med $$$x = \overline{B}$$$:
$$\overline{A} \cdot {\color{red}\left(\overline{B} \cdot \overline{B}\right)} \cdot \overline{C} \cdot \overline{D} \cdot A = \overline{A} \cdot {\color{red}\left(\overline{B}\right)} \cdot \overline{C} \cdot \overline{D} \cdot A$$Använd den kommutativa lagen:
$${\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A\right)} = {\color{red}\left(A \cdot \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}\right)}$$Tillämpa komplementregeln $$$x \cdot \overline{x} = 0$$$ på $$$x = A$$$:
$${\color{red}\left(A \cdot \overline{A}\right)} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$Använd den kommutativa lagen:
$${\color{red}\left(0 \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}\right)} = {\color{red}\left(\overline{B} \cdot 0 \cdot \overline{C} \cdot \overline{D}\right)}$$Tillämpa domineringslagen (noll-lagen, annulleringslagen) $$$x \cdot 0 = 0$$$ med $$$x = \overline{B}$$$:
$${\color{red}\left(\overline{B} \cdot 0\right)} \cdot \overline{C} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{C} \cdot \overline{D}$$Använd den kommutativa lagen:
$${\color{red}\left(0 \cdot \overline{C} \cdot \overline{D}\right)} = {\color{red}\left(\overline{C} \cdot 0 \cdot \overline{D}\right)}$$Tillämpa domineringslagen (noll-lagen, annulleringslagen) $$$x \cdot 0 = 0$$$ med $$$x = \overline{C}$$$:
$${\color{red}\left(\overline{C} \cdot 0\right)} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{D}$$Använd den kommutativa lagen:
$${\color{red}\left(0 \cdot \overline{D}\right)} = {\color{red}\left(\overline{D} \cdot 0\right)}$$Tillämpa domineringslagen (noll-lagen, annulleringslagen) $$$x \cdot 0 = 0$$$ med $$$x = \overline{D}$$$:
$${\color{red}\left(\overline{D} \cdot 0\right)} = {\color{red}\left(0\right)}$$Svar
$$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B} = 0$$$