Semplifica $$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}$$$

La calcolatrice semplificherà l'espressione booleana $$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di tavole di verità

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Semplifica l'espressione booleana $$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}.$$$

Soluzione

Applica la proprietà commutativa:

$${\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}\right)} = {\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A\right)}$$

Applica la legge di idempotenza $$$x \cdot x = x$$$ con $$$x = \overline{B}$$$:

$$\overline{A} \cdot {\color{red}\left(\overline{B} \cdot \overline{B}\right)} \cdot \overline{C} \cdot \overline{D} \cdot A = \overline{A} \cdot {\color{red}\left(\overline{B}\right)} \cdot \overline{C} \cdot \overline{D} \cdot A$$

Applica la proprietà commutativa:

$${\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A\right)} = {\color{red}\left(A \cdot \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}\right)}$$

Applica la legge del complemento $$$x \cdot \overline{x} = 0$$$ con $$$x = A$$$:

$${\color{red}\left(A \cdot \overline{A}\right)} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

Applica la proprietà commutativa:

$${\color{red}\left(0 \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}\right)} = {\color{red}\left(\overline{B} \cdot 0 \cdot \overline{C} \cdot \overline{D}\right)}$$

Applica la legge dominante (nullo, annullamento) $$$x \cdot 0 = 0$$$ con $$$x = \overline{B}$$$:

$${\color{red}\left(\overline{B} \cdot 0\right)} \cdot \overline{C} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{C} \cdot \overline{D}$$

Applica la proprietà commutativa:

$${\color{red}\left(0 \cdot \overline{C} \cdot \overline{D}\right)} = {\color{red}\left(\overline{C} \cdot 0 \cdot \overline{D}\right)}$$

Applica la legge dominante (nullo, annullamento) $$$x \cdot 0 = 0$$$ con $$$x = \overline{C}$$$:

$${\color{red}\left(\overline{C} \cdot 0\right)} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{D}$$

Applica la proprietà commutativa:

$${\color{red}\left(0 \cdot \overline{D}\right)} = {\color{red}\left(\overline{D} \cdot 0\right)}$$

Applica la legge dominante (nullo, annullamento) $$$x \cdot 0 = 0$$$ con $$$x = \overline{D}$$$:

$${\color{red}\left(\overline{D} \cdot 0\right)} = {\color{red}\left(0\right)}$$

Risposta

$$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B} = 0$$$


Please try a new game Rotatly