Simplifique $$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}$$$

A calculadora simplificará a expressão booleana $$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}$$$, mostrando os passos.

Calculadora relacionada: Calculadora de Tabela-Verdade

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Simplifique a expressão booleana $$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}.$$$

Solução

Aplique a lei comutativa:

$${\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B}\right)} = {\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A\right)}$$

Aplique a lei idempotente $$$x \cdot x = x$$$ com $$$x = \overline{B}$$$:

$$\overline{A} \cdot {\color{red}\left(\overline{B} \cdot \overline{B}\right)} \cdot \overline{C} \cdot \overline{D} \cdot A = \overline{A} \cdot {\color{red}\left(\overline{B}\right)} \cdot \overline{C} \cdot \overline{D} \cdot A$$

Aplique a lei comutativa:

$${\color{red}\left(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A\right)} = {\color{red}\left(A \cdot \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}\right)}$$

Aplique a lei do complemento $$$x \cdot \overline{x} = 0$$$ com $$$x = A$$$:

$${\color{red}\left(A \cdot \overline{A}\right)} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

Aplique a lei comutativa:

$${\color{red}\left(0 \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}\right)} = {\color{red}\left(\overline{B} \cdot 0 \cdot \overline{C} \cdot \overline{D}\right)}$$

Aplique a lei dominante (do nulo, do anulamento) $$$x \cdot 0 = 0$$$ com $$$x = \overline{B}$$$:

$${\color{red}\left(\overline{B} \cdot 0\right)} \cdot \overline{C} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{C} \cdot \overline{D}$$

Aplique a lei comutativa:

$${\color{red}\left(0 \cdot \overline{C} \cdot \overline{D}\right)} = {\color{red}\left(\overline{C} \cdot 0 \cdot \overline{D}\right)}$$

Aplique a lei dominante (do nulo, do anulamento) $$$x \cdot 0 = 0$$$ com $$$x = \overline{C}$$$:

$${\color{red}\left(\overline{C} \cdot 0\right)} \cdot \overline{D} = {\color{red}\left(0\right)} \cdot \overline{D}$$

Aplique a lei comutativa:

$${\color{red}\left(0 \cdot \overline{D}\right)} = {\color{red}\left(\overline{D} \cdot 0\right)}$$

Aplique a lei dominante (do nulo, do anulamento) $$$x \cdot 0 = 0$$$ com $$$x = \overline{D}$$$:

$${\color{red}\left(\overline{D} \cdot 0\right)} = {\color{red}\left(0\right)}$$

Resposta

$$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot A \cdot \overline{B} = 0$$$


Please try a new game Rotatly