Andra derivatan av $$$x^{e}$$$

Kalkylatorn kommer att beräkna den andra derivatan av $$$x^{e}$$$, med steg som visas.

Relaterade kalkylatorer: Derivata-beräknare, Kalkylator för logaritmisk derivering

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right)$$$.

Lösning

Bestäm den första derivatan $$$\frac{d}{dx} \left(x^{e}\right)$$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = e$$$:

$${\color{red}\left(\frac{d}{dx} \left(x^{e}\right)\right)} = {\color{red}\left(e x^{-1 + e}\right)}$$

Alltså, $$$\frac{d}{dx} \left(x^{e}\right) = e x^{-1 + e}$$$.

Därefter, $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = \frac{d}{dx} \left(e x^{-1 + e}\right)$$$

Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = e$$$ och $$$f{\left(x \right)} = x^{-1 + e}$$$:

$${\color{red}\left(\frac{d}{dx} \left(e x^{-1 + e}\right)\right)} = {\color{red}\left(e \frac{d}{dx} \left(x^{-1 + e}\right)\right)}$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = -1 + e$$$:

$$e {\color{red}\left(\frac{d}{dx} \left(x^{-1 + e}\right)\right)} = e {\color{red}\left(\left(-1 + e\right) x^{-2 + e}\right)}$$

Alltså, $$$\frac{d}{dx} \left(e x^{-1 + e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$.

Således, $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$.

Svar

$$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$A


Please try a new game Rotatly