Second derivative of $$$x^{e}$$$

The calculator will find the second derivative of $$$x^{e}$$$, with steps shown.

Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right)$$$.

Solution

Find the first derivative $$$\frac{d}{dx} \left(x^{e}\right)$$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = e$$$:

$${\color{red}\left(\frac{d}{dx} \left(x^{e}\right)\right)} = {\color{red}\left(e x^{-1 + e}\right)}$$

Thus, $$$\frac{d}{dx} \left(x^{e}\right) = e x^{-1 + e}$$$.

Next, $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = \frac{d}{dx} \left(e x^{-1 + e}\right)$$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = e$$$ and $$$f{\left(x \right)} = x^{-1 + e}$$$:

$${\color{red}\left(\frac{d}{dx} \left(e x^{-1 + e}\right)\right)} = {\color{red}\left(e \frac{d}{dx} \left(x^{-1 + e}\right)\right)}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = -1 + e$$$:

$$e {\color{red}\left(\frac{d}{dx} \left(x^{-1 + e}\right)\right)} = e {\color{red}\left(\left(-1 + e\right) x^{-2 + e}\right)}$$

Thus, $$$\frac{d}{dx} \left(e x^{-1 + e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$.

Therefore, $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$.

Answer

$$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$A


Please try a new game Rotatly