Segunda derivada de $$$x^{e}$$$
Calculadoras relacionadas: Calculadora de derivadas, Calculadora de diferenciación logarítmica
Tu entrada
Halla $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right)$$$.
Solución
Calcule la primera derivada $$$\frac{d}{dx} \left(x^{e}\right)$$$
Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = e$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{e}\right)\right)} = {\color{red}\left(e x^{-1 + e}\right)}$$Por lo tanto, $$$\frac{d}{dx} \left(x^{e}\right) = e x^{-1 + e}$$$.
A continuación, $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = \frac{d}{dx} \left(e x^{-1 + e}\right)$$$
Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = e$$$ y $$$f{\left(x \right)} = x^{-1 + e}$$$:
$${\color{red}\left(\frac{d}{dx} \left(e x^{-1 + e}\right)\right)} = {\color{red}\left(e \frac{d}{dx} \left(x^{-1 + e}\right)\right)}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = -1 + e$$$:
$$e {\color{red}\left(\frac{d}{dx} \left(x^{-1 + e}\right)\right)} = e {\color{red}\left(\left(-1 + e\right) x^{-2 + e}\right)}$$Por lo tanto, $$$\frac{d}{dx} \left(e x^{-1 + e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$.
Por lo tanto, $$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$.
Respuesta
$$$\frac{d^{2}}{dx^{2}} \left(x^{e}\right) = e x^{-2 + e} \left(-1 + e\right)$$$A