Integral de $$$e^{x} \sin{\left(x \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$e^{x} \sin{\left(x \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int e^{x} \sin{\left(x \right)}\, dx$$$.

Solução

Para a integral $$$\int{e^{x} \sin{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=\sin{\left(x \right)}$$$ e $$$\operatorname{dv}=e^{x} dx$$$.

Então $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (os passos podem ser vistos »).

Logo,

$${\color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(e^{x} \sin{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}\right)}}$$

Para a integral $$$\int{e^{x} \cos{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=\cos{\left(x \right)}$$$ e $$$\operatorname{dv}=e^{x} dx$$$.

Então $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (os passos podem ser vistos »).

Logo,

$$e^{x} \sin{\left(x \right)} - {\color{red}{\int{e^{x} \cos{\left(x \right)} d x}}}=e^{x} \sin{\left(x \right)} - {\color{red}{\left(\cos{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}=e^{x} \sin{\left(x \right)} - {\color{red}{\left(e^{x} \cos{\left(x \right)} - \int{\left(- e^{x} \sin{\left(x \right)}\right)d x}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=-1$$$ e $$$f{\left(x \right)} = e^{x} \sin{\left(x \right)}$$$:

$$e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + {\color{red}{\int{\left(- e^{x} \sin{\left(x \right)}\right)d x}}} = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + {\color{red}{\left(- \int{e^{x} \sin{\left(x \right)} d x}\right)}}$$

Chegamos a uma integral que já vimos.

Assim, obtivemos a seguinte equação simples em relação à integral:

$$\int{e^{x} \sin{\left(x \right)} d x} = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} - \int{e^{x} \sin{\left(x \right)} d x}$$

Resolvendo, obtemos que

$$\int{e^{x} \sin{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}$$

Portanto,

$$\int{e^{x} \sin{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}$$

Simplifique:

$$\int{e^{x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2}$$

Adicione a constante de integração:

$$\int{e^{x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2}+C$$

Resposta

$$$\int e^{x} \sin{\left(x \right)}\, dx = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2} + C$$$A


Please try a new game Rotatly