$$$e^{x} \sin{\left(x \right)}$$$의 적분
사용자 입력
$$$\int e^{x} \sin{\left(x \right)}\, dx$$$을(를) 구하시오.
풀이
적분 $$$\int{e^{x} \sin{\left(x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\sin{\left(x \right)}$$$와 $$$\operatorname{dv}=e^{x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$${\color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(e^{x} \sin{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}\right)}}$$
적분 $$$\int{e^{x} \cos{\left(x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\cos{\left(x \right)}$$$와 $$$\operatorname{dv}=e^{x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$e^{x} \sin{\left(x \right)} - {\color{red}{\int{e^{x} \cos{\left(x \right)} d x}}}=e^{x} \sin{\left(x \right)} - {\color{red}{\left(\cos{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}=e^{x} \sin{\left(x \right)} - {\color{red}{\left(e^{x} \cos{\left(x \right)} - \int{\left(- e^{x} \sin{\left(x \right)}\right)d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=-1$$$와 $$$f{\left(x \right)} = e^{x} \sin{\left(x \right)}$$$에 적용하세요:
$$e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + {\color{red}{\int{\left(- e^{x} \sin{\left(x \right)}\right)d x}}} = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + {\color{red}{\left(- \int{e^{x} \sin{\left(x \right)} d x}\right)}}$$
우리는 이미 보았던 적분에 도달했습니다.
따라서 적분에 관한 다음과 같은 간단한 등식을 얻었습니다:
$$\int{e^{x} \sin{\left(x \right)} d x} = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} - \int{e^{x} \sin{\left(x \right)} d x}$$
이를 풀면, 다음을 얻는다
$$\int{e^{x} \sin{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}$$
따라서,
$$\int{e^{x} \sin{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}$$
간단히 하시오:
$$\int{e^{x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2}$$
적분 상수를 추가하세요:
$$\int{e^{x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2}+C$$
정답
$$$\int e^{x} \sin{\left(x \right)}\, dx = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2} + C$$$A