$$$e^{x} \sin{\left(x \right)}$$$の積分
入力内容
$$$\int e^{x} \sin{\left(x \right)}\, dx$$$ を求めよ。
解答
積分 $$$\int{e^{x} \sin{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=\sin{\left(x \right)}$$$ と $$$\operatorname{dv}=e^{x} dx$$$ とする。
したがって、$$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$(手順は»を参照)。
したがって、
$${\color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(e^{x} \sin{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}\right)}}$$
積分 $$$\int{e^{x} \cos{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=\cos{\left(x \right)}$$$ と $$$\operatorname{dv}=e^{x} dx$$$ とする。
したがって、$$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$(手順は»を参照)。
したがって、
$$e^{x} \sin{\left(x \right)} - {\color{red}{\int{e^{x} \cos{\left(x \right)} d x}}}=e^{x} \sin{\left(x \right)} - {\color{red}{\left(\cos{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}=e^{x} \sin{\left(x \right)} - {\color{red}{\left(e^{x} \cos{\left(x \right)} - \int{\left(- e^{x} \sin{\left(x \right)}\right)d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-1$$$ と $$$f{\left(x \right)} = e^{x} \sin{\left(x \right)}$$$ に対して適用する:
$$e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + {\color{red}{\int{\left(- e^{x} \sin{\left(x \right)}\right)d x}}} = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + {\color{red}{\left(- \int{e^{x} \sin{\left(x \right)} d x}\right)}}$$
すでに見た積分に帰着しました。
したがって、積分に関する次の簡単な等式を得ました:
$$\int{e^{x} \sin{\left(x \right)} d x} = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} - \int{e^{x} \sin{\left(x \right)} d x}$$
これを解くと、次のようになります。
$$\int{e^{x} \sin{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}$$
したがって、
$$\int{e^{x} \sin{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}$$
簡単化せよ:
$$\int{e^{x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2}$$
積分定数を加える:
$$\int{e^{x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2}+C$$
解答
$$$\int e^{x} \sin{\left(x \right)}\, dx = - \frac{\sqrt{2} e^{x} \cos{\left(x + \frac{\pi}{4} \right)}}{2} + C$$$A