Integral de $$$\frac{\sqrt{x^{2} - 1}}{x - 1}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx$$$.
Solução
Seja $$$x=\cosh{\left(u \right)}$$$.
Então $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (os passos podem ser vistos »).
Além disso, segue-se que $$$u=\operatorname{acosh}{\left(x \right)}$$$.
Portanto,
$$$\frac{\sqrt{x^{2} - 1}}{x - 1} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}$$$
Use a identidade $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1}$$$
Supondo que $$$\sinh{\left( u \right)} \ge 0$$$, obtemos o seguinte:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)} - 1}$$$
Portanto,
$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}}$$
Reescreva o seno hiperbólico em termos do cosseno hiperbólico, reescreva ainda o numerador, use a fórmula da diferença de quadrados e simplifique:
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}} = {\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}}$$
Integre termo a termo:
$${\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\cosh{\left(u \right)} d u}\right)}}$$
Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:
$$\int{\cosh{\left(u \right)} d u} + {\color{red}{\int{1 d u}}} = \int{\cosh{\left(u \right)} d u} + {\color{red}{u}}$$
A integral do cosseno hiperbólico é $$$\int{\cosh{\left(u \right)} d u} = \sinh{\left(u \right)}$$$:
$$u + {\color{red}{\int{\cosh{\left(u \right)} d u}}} = u + {\color{red}{\sinh{\left(u \right)}}}$$
Recorde que $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$\sinh{\left({\color{red}{u}} \right)} + {\color{red}{u}} = \sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} + {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$
Portanto,
$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}$$
Adicione a constante de integração:
$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}+C$$
Resposta
$$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx = \left(\sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}\right) + C$$$A