Integral de $$$\frac{\sqrt{x^{2} - 1}}{x - 1}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\sqrt{x^{2} - 1}}{x - 1}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx$$$.

Solución

Sea $$$x=\cosh{\left(u \right)}$$$.

Entonces $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (los pasos pueden verse »).

Además, se sigue que $$$u=\operatorname{acosh}{\left(x \right)}$$$.

Por lo tanto,

$$$\frac{\sqrt{x^{2} - 1}}{x - 1} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}$$$

Utiliza la identidad $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1}$$$

Suponiendo que $$$\sinh{\left( u \right)} \ge 0$$$, obtenemos lo siguiente:

$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)} - 1}$$$

Entonces,

$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}}$$

Reescribe el seno hiperbólico en términos del coseno hiperbólico, vuelve a expresar el numerador, usa la fórmula de la diferencia de cuadrados y simplifica:

$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}} = {\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}}$$

Integra término a término:

$${\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\cosh{\left(u \right)} d u}\right)}}$$

Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$\int{\cosh{\left(u \right)} d u} + {\color{red}{\int{1 d u}}} = \int{\cosh{\left(u \right)} d u} + {\color{red}{u}}$$

La integral del coseno hiperbólico es $$$\int{\cosh{\left(u \right)} d u} = \sinh{\left(u \right)}$$$:

$$u + {\color{red}{\int{\cosh{\left(u \right)} d u}}} = u + {\color{red}{\sinh{\left(u \right)}}}$$

Recordemos que $$$u=\operatorname{acosh}{\left(x \right)}$$$:

$$\sinh{\left({\color{red}{u}} \right)} + {\color{red}{u}} = \sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} + {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$

Por lo tanto,

$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}$$

Añade la constante de integración:

$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}+C$$

Respuesta

$$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx = \left(\sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly