$$$\frac{\sqrt{x^{2} - 1}}{x - 1}$$$ 的积分
您的输入
求$$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx$$$。
解答
设$$$x=\cosh{\left(u \right)}$$$。
则$$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$(步骤见»)。
此外,可得$$$u=\operatorname{acosh}{\left(x \right)}$$$。
所以,
$$$\frac{\sqrt{x^{2} - 1}}{x - 1} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}$$$
利用恒等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1}$$$
假设$$$\sinh{\left( u \right)} \ge 0$$$,我们得到如下结果:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)} - 1}$$$
因此,
$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}}$$
将双曲正弦用双曲余弦表示,进一步将分子改写,使用平方差公式,并化简。:
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}} = {\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}}$$
逐项积分:
$${\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\cosh{\left(u \right)} d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$\int{\cosh{\left(u \right)} d u} + {\color{red}{\int{1 d u}}} = \int{\cosh{\left(u \right)} d u} + {\color{red}{u}}$$
双曲余弦的积分为 $$$\int{\cosh{\left(u \right)} d u} = \sinh{\left(u \right)}$$$:
$$u + {\color{red}{\int{\cosh{\left(u \right)} d u}}} = u + {\color{red}{\sinh{\left(u \right)}}}$$
回忆一下 $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$\sinh{\left({\color{red}{u}} \right)} + {\color{red}{u}} = \sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} + {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$
因此,
$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}$$
加上积分常数:
$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}+C$$
答案
$$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx = \left(\sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}\right) + C$$$A