$$$\frac{\sqrt{x^{2} - 1}}{x - 1}$$$ 的積分
您的輸入
求$$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx$$$。
解答
令 $$$x=\cosh{\left(u \right)}$$$。
則 $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$(步驟見»)。
此外,由此可得 $$$u=\operatorname{acosh}{\left(x \right)}$$$。
因此,
$$$\frac{\sqrt{x^{2} - 1}}{x - 1} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}$$$
使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1}$$$
假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)} - 1}$$$
積分變為
$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}}$$
以雙曲餘弦表示雙曲正弦,進一步改寫分子,使用平方差公式,並化簡。:
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}} = {\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}}$$
逐項積分:
$${\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\cosh{\left(u \right)} d u}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$\int{\cosh{\left(u \right)} d u} + {\color{red}{\int{1 d u}}} = \int{\cosh{\left(u \right)} d u} + {\color{red}{u}}$$
雙曲餘弦的積分為 $$$\int{\cosh{\left(u \right)} d u} = \sinh{\left(u \right)}$$$:
$$u + {\color{red}{\int{\cosh{\left(u \right)} d u}}} = u + {\color{red}{\sinh{\left(u \right)}}}$$
回顧一下 $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$\sinh{\left({\color{red}{u}} \right)} + {\color{red}{u}} = \sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} + {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$
因此,
$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}$$
加上積分常數:
$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}+C$$
答案
$$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx = \left(\sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}\right) + C$$$A