$$$\frac{\sqrt{x^{2} - 1}}{x - 1}$$$の積分

この計算機は、手順を示しながら$$$\frac{\sqrt{x^{2} - 1}}{x - 1}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx$$$ を求めよ。

解答

$$$x=\cosh{\left(u \right)}$$$ とする。

すると $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (手順は»で確認できます)。

また、$$$u=\operatorname{acosh}{\left(x \right)}$$$が成り立つ。

したがって、

$$$\frac{\sqrt{x^{2} - 1}}{x - 1} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}$$$

恒等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$ を用いよ:

$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)} - 1}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1}$$$

$$$\sinh{\left( u \right)} \ge 0$$$ を仮定すると、以下が得られる:

$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)} - 1} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)} - 1}$$$

したがって、

$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}}$$

双曲線正弦を双曲線余弦で表し直し、分子をさらに書き換え、平方差の公式を用い、簡単化せよ:

$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)} - 1} d u}}} = {\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}}$$

項別に積分せよ:

$${\color{red}{\int{\left(\cosh{\left(u \right)} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\cosh{\left(u \right)} d u}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$$\int{\cosh{\left(u \right)} d u} + {\color{red}{\int{1 d u}}} = \int{\cosh{\left(u \right)} d u} + {\color{red}{u}}$$

双曲線余弦関数の積分は $$$\int{\cosh{\left(u \right)} d u} = \sinh{\left(u \right)}$$$ です:

$$u + {\color{red}{\int{\cosh{\left(u \right)} d u}}} = u + {\color{red}{\sinh{\left(u \right)}}}$$

次のことを思い出してください $$$u=\operatorname{acosh}{\left(x \right)}$$$:

$$\sinh{\left({\color{red}{u}} \right)} + {\color{red}{u}} = \sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} + {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$

したがって、

$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}$$

積分定数を加える:

$$\int{\frac{\sqrt{x^{2} - 1}}{x - 1} d x} = \sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}+C$$

解答

$$$\int \frac{\sqrt{x^{2} - 1}}{x - 1}\, dx = \left(\sqrt{x - 1} \sqrt{x + 1} + \operatorname{acosh}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly