Integral de $$$\frac{1}{x^{2} \sqrt{1 - x^{2}}}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{1}{x^{2} \sqrt{1 - x^{2}}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx$$$.

Solução

Seja $$$x=\sin{\left(u \right)}$$$.

Então $$$dx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (os passos podem ser vistos »).

Além disso, segue-se que $$$u=\operatorname{asin}{\left(x \right)}$$$.

Assim,

$$$\frac{1}{x^{2} \sqrt{1 - x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$

Use a identidade $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$

Supondo que $$$\cos{\left( u \right)} \ge 0$$$, obtemos o seguinte:

$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}} = \frac{1}{\sin^{2}{\left( u \right)} \cos{\left( u \right)}}$$$

A integral torna-se

$${\color{red}{\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}$$

Reescreva o integrando em termos da cossecante:

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$

A integral de $$$\csc^{2}{\left(u \right)}$$$ é $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$${\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$

Recorde que $$$u=\operatorname{asin}{\left(x \right)}$$$:

$$- \cot{\left({\color{red}{u}} \right)} = - \cot{\left({\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}$$

Portanto,

$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}$$

Adicione a constante de integração:

$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}+C$$

Resposta

$$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx = - \frac{\sqrt{1 - x^{2}}}{x} + C$$$A


Please try a new game Rotatly