Integrale di $$$\frac{1}{x^{2} \sqrt{1 - x^{2}}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{x^{2} \sqrt{1 - x^{2}}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx$$$.

Soluzione

Sia $$$x=\sin{\left(u \right)}$$$.

Quindi $$$dx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (i passaggi possono essere visti »).

Inoltre, ne consegue che $$$u=\operatorname{asin}{\left(x \right)}$$$.

Pertanto,

$$$\frac{1}{x^{2} \sqrt{1 - x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$

Usa l'identità $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$

Assumendo che $$$\cos{\left( u \right)} \ge 0$$$, otteniamo quanto segue:

$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}} = \frac{1}{\sin^{2}{\left( u \right)} \cos{\left( u \right)}}$$$

Pertanto,

$${\color{red}{\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}$$

Riesprimi l'integrando in termini della cosecante:

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$

L'integrale di $$$\csc^{2}{\left(u \right)}$$$ è $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$${\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$

Ricordiamo che $$$u=\operatorname{asin}{\left(x \right)}$$$:

$$- \cot{\left({\color{red}{u}} \right)} = - \cot{\left({\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}$$

Pertanto,

$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}+C$$

Risposta

$$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx = - \frac{\sqrt{1 - x^{2}}}{x} + C$$$A


Please try a new game Rotatly