Integral of $$$\frac{1}{x^{2} \sqrt{1 - x^{2}}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx$$$.
Solution
Let $$$x=\sin{\left(u \right)}$$$.
Then $$$dx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (steps can be seen »).
Also, it follows that $$$u=\operatorname{asin}{\left(x \right)}$$$.
Therefore,
$$$\frac{1}{x^{2} \sqrt{1 - x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$
Use the identity $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$
Assuming that $$$\cos{\left( u \right)} \ge 0$$$, we obtain the following:
$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}} = \frac{1}{\sin^{2}{\left( u \right)} \cos{\left( u \right)}}$$$
Therefore,
$${\color{red}{\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}$$
Rewrite the integrand in terms of the cosecant:
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
The integral of $$$\csc^{2}{\left(u \right)}$$$ is $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:
$${\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
Recall that $$$u=\operatorname{asin}{\left(x \right)}$$$:
$$- \cot{\left({\color{red}{u}} \right)} = - \cot{\left({\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}$$
Therefore,
$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}$$
Add the constant of integration:
$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}+C$$
Answer
$$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx = - \frac{\sqrt{1 - x^{2}}}{x} + C$$$A