Intégrale de $$$\frac{1}{x^{2} \sqrt{1 - x^{2}}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx$$$.
Solution
Soit $$$x=\sin{\left(u \right)}$$$.
Alors $$$dx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (les étapes peuvent être vues »).
De plus, il s'ensuit que $$$u=\operatorname{asin}{\left(x \right)}$$$.
Par conséquent,
$$$\frac{1}{x^{2} \sqrt{1 - x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$
Utilisez l'identité $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$ :
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$
En supposant que $$$\cos{\left( u \right)} \ge 0$$$, nous obtenons ce qui suit :
$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}} = \frac{1}{\sin^{2}{\left( u \right)} \cos{\left( u \right)}}$$$
L’intégrale peut se réécrire sous la forme
$${\color{red}{\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}$$
Réécrivez l'intégrande en fonction de la cosécante:
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
L’intégrale de $$$\csc^{2}{\left(u \right)}$$$ est $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$ :
$${\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
Rappelons que $$$u=\operatorname{asin}{\left(x \right)}$$$ :
$$- \cot{\left({\color{red}{u}} \right)} = - \cot{\left({\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}$$
Par conséquent,
$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}+C$$
Réponse
$$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx = - \frac{\sqrt{1 - x^{2}}}{x} + C$$$A