$$$\frac{1}{x^{2} \sqrt{1 - x^{2}}}$$$の積分
入力内容
$$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx$$$ を求めよ。
解答
$$$x=\sin{\left(u \right)}$$$ とする。
すると $$$dx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (手順は»で確認できます)。
また、$$$u=\operatorname{asin}{\left(x \right)}$$$が成り立つ。
したがって、
$$$\frac{1}{x^{2} \sqrt{1 - x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$
恒等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$ を用いよ:
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$
$$$\cos{\left( u \right)} \ge 0$$$ を仮定すると、以下が得られる:
$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}} = \frac{1}{\sin^{2}{\left( u \right)} \cos{\left( u \right)}}$$$
したがって、
$${\color{red}{\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}$$
被積分関数を余割関数を用いて書き換えなさい:
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
$$$\csc^{2}{\left(u \right)}$$$ の不定積分は $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$ です:
$${\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
次のことを思い出してください $$$u=\operatorname{asin}{\left(x \right)}$$$:
$$- \cot{\left({\color{red}{u}} \right)} = - \cot{\left({\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}$$
したがって、
$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}$$
積分定数を加える:
$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}+C$$
解答
$$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx = - \frac{\sqrt{1 - x^{2}}}{x} + C$$$A