$$$\frac{1}{x^{2} \sqrt{1 - x^{2}}}$$$의 적분
사용자 입력
$$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx$$$을(를) 구하시오.
풀이
$$$x=\sin{\left(u \right)}$$$라 하자.
따라서 $$$dx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (풀이 과정은 »에서 볼 수 있습니다).
또한 $$$u=\operatorname{asin}{\left(x \right)}$$$가 성립한다.
따라서,
$$$\frac{1}{x^{2} \sqrt{1 - x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$
$$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$ 항등식을 사용하시오:
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$
$$$\cos{\left( u \right)} \ge 0$$$라고 가정하면, 다음을 얻습니다:
$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}} = \frac{1}{\sin^{2}{\left( u \right)} \cos{\left( u \right)}}$$$
따라서,
$${\color{red}{\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}$$
피적분함수를 코시컨트 함수로 다시 쓰시오:
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
$$$\csc^{2}{\left(u \right)}$$$의 적분은 $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:
$${\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
다음 $$$u=\operatorname{asin}{\left(x \right)}$$$을 기억하라:
$$- \cot{\left({\color{red}{u}} \right)} = - \cot{\left({\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}$$
따라서,
$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{x^{2} \sqrt{1 - x^{2}}} d x} = - \frac{\sqrt{1 - x^{2}}}{x}+C$$
정답
$$$\int \frac{1}{x^{2} \sqrt{1 - x^{2}}}\, dx = - \frac{\sqrt{1 - x^{2}}}{x} + C$$$A