Integral de $$$\frac{1}{2 n - 1}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{1}{2 n - 1}\, dn$$$.
Solução
Seja $$$u=2 n - 1$$$.
Então $$$du=\left(2 n - 1\right)^{\prime }dn = 2 dn$$$ (veja os passos »), e obtemos $$$dn = \frac{du}{2}$$$.
Assim,
$${\color{red}{\int{\frac{1}{2 n - 1} d n}}} = {\color{red}{\int{\frac{1}{2 u} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Recorde que $$$u=2 n - 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(2 n - 1\right)}}}\right| \right)}}{2}$$
Portanto,
$$\int{\frac{1}{2 n - 1} d n} = \frac{\ln{\left(\left|{2 n - 1}\right| \right)}}{2}$$
Adicione a constante de integração:
$$\int{\frac{1}{2 n - 1} d n} = \frac{\ln{\left(\left|{2 n - 1}\right| \right)}}{2}+C$$
Resposta
$$$\int \frac{1}{2 n - 1}\, dn = \frac{\ln\left(\left|{2 n - 1}\right|\right)}{2} + C$$$A