Ολοκλήρωμα του $$$\frac{1}{2 n - 1}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{2 n - 1}\, dn$$$.
Λύση
Έστω $$$u=2 n - 1$$$.
Τότε $$$du=\left(2 n - 1\right)^{\prime }dn = 2 dn$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dn = \frac{du}{2}$$$.
Επομένως,
$${\color{red}{\int{\frac{1}{2 n - 1} d n}}} = {\color{red}{\int{\frac{1}{2 u} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Θυμηθείτε ότι $$$u=2 n - 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(2 n - 1\right)}}}\right| \right)}}{2}$$
Επομένως,
$$\int{\frac{1}{2 n - 1} d n} = \frac{\ln{\left(\left|{2 n - 1}\right| \right)}}{2}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{2 n - 1} d n} = \frac{\ln{\left(\left|{2 n - 1}\right| \right)}}{2}+C$$
Απάντηση
$$$\int \frac{1}{2 n - 1}\, dn = \frac{\ln\left(\left|{2 n - 1}\right|\right)}{2} + C$$$A