$$$\frac{1}{2 n - 1}$$$ 的积分

该计算器将求出$$$\frac{1}{2 n - 1}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{2 n - 1}\, dn$$$

解答

$$$u=2 n - 1$$$

$$$du=\left(2 n - 1\right)^{\prime }dn = 2 dn$$$ (步骤见»),并有$$$dn = \frac{du}{2}$$$

该积分可以改写为

$${\color{red}{\int{\frac{1}{2 n - 1} d n}}} = {\color{red}{\int{\frac{1}{2 u} d u}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

回忆一下 $$$u=2 n - 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(2 n - 1\right)}}}\right| \right)}}{2}$$

因此,

$$\int{\frac{1}{2 n - 1} d n} = \frac{\ln{\left(\left|{2 n - 1}\right| \right)}}{2}$$

加上积分常数:

$$\int{\frac{1}{2 n - 1} d n} = \frac{\ln{\left(\left|{2 n - 1}\right| \right)}}{2}+C$$

答案

$$$\int \frac{1}{2 n - 1}\, dn = \frac{\ln\left(\left|{2 n - 1}\right|\right)}{2} + C$$$A


Please try a new game Rotatly