Integraal van $$$\frac{1}{2 n - 1}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{1}{2 n - 1}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1}{2 n - 1}\, dn$$$.

Oplossing

Zij $$$u=2 n - 1$$$.

Dan $$$du=\left(2 n - 1\right)^{\prime }dn = 2 dn$$$ (de stappen zijn te zien »), en dan geldt dat $$$dn = \frac{du}{2}$$$.

Dus,

$${\color{red}{\int{\frac{1}{2 n - 1} d n}}} = {\color{red}{\int{\frac{1}{2 u} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

We herinneren eraan dat $$$u=2 n - 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(2 n - 1\right)}}}\right| \right)}}{2}$$

Dus,

$$\int{\frac{1}{2 n - 1} d n} = \frac{\ln{\left(\left|{2 n - 1}\right| \right)}}{2}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{2 n - 1} d n} = \frac{\ln{\left(\left|{2 n - 1}\right| \right)}}{2}+C$$

Antwoord

$$$\int \frac{1}{2 n - 1}\, dn = \frac{\ln\left(\left|{2 n - 1}\right|\right)}{2} + C$$$A


Please try a new game Rotatly