Integral de $$$\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx$$$.

Solução

Seja $$$u=\cos{\left(x \right)}$$$.

Então $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (veja os passos »), e obtemos $$$\sin{\left(x \right)} dx = - du$$$.

Logo,

$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x}}} = {\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$${\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\sin{\left(u \right)} d u}\right)}}$$

A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- {\color{red}{\int{\sin{\left(u \right)} d u}}} = - {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Recorde que $$$u=\cos{\left(x \right)}$$$:

$$\cos{\left({\color{red}{u}} \right)} = \cos{\left({\color{red}{\cos{\left(x \right)}}} \right)}$$

Portanto,

$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}$$

Adicione a constante de integração:

$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}+C$$

Resposta

$$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx = \cos{\left(\cos{\left(x \right)} \right)} + C$$$A


Please try a new game Rotatly