$$$\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}$$$ 的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx$$$。
解答
设$$$u=\cos{\left(x \right)}$$$。
则$$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (步骤见»),并有$$$\sin{\left(x \right)} dx = - du$$$。
该积分可以改写为
$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x}}} = {\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\sin{\left(u \right)} d u}\right)}}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- {\color{red}{\int{\sin{\left(u \right)} d u}}} = - {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
回忆一下 $$$u=\cos{\left(x \right)}$$$:
$$\cos{\left({\color{red}{u}} \right)} = \cos{\left({\color{red}{\cos{\left(x \right)}}} \right)}$$
因此,
$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}$$
加上积分常数:
$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}+C$$
答案
$$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx = \cos{\left(\cos{\left(x \right)} \right)} + C$$$A