$$$\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}$$$ 的積分

此計算器將求出 $$$\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx$$$

解答

$$$u=\cos{\left(x \right)}$$$

$$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sin{\left(x \right)} dx = - du$$$

所以,

$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x}}} = {\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$

$${\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\sin{\left(u \right)} d u}\right)}}$$

正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$

$$- {\color{red}{\int{\sin{\left(u \right)} d u}}} = - {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

回顧一下 $$$u=\cos{\left(x \right)}$$$

$$\cos{\left({\color{red}{u}} \right)} = \cos{\left({\color{red}{\cos{\left(x \right)}}} \right)}$$

因此,

$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}$$

加上積分常數:

$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}+C$$

答案

$$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx = \cos{\left(\cos{\left(x \right)} \right)} + C$$$A


Please try a new game Rotatly