$$$\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx$$$ を求めよ。
解答
$$$u=\cos{\left(x \right)}$$$ とする。
すると $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\sin{\left(x \right)} dx = - du$$$ となります。
したがって、
$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x}}} = {\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$ と $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:
$${\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\sin{\left(u \right)} d u}\right)}}$$
正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:
$$- {\color{red}{\int{\sin{\left(u \right)} d u}}} = - {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
次のことを思い出してください $$$u=\cos{\left(x \right)}$$$:
$$\cos{\left({\color{red}{u}} \right)} = \cos{\left({\color{red}{\cos{\left(x \right)}}} \right)}$$
したがって、
$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}$$
積分定数を加える:
$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}+C$$
解答
$$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx = \cos{\left(\cos{\left(x \right)} \right)} + C$$$A