Integraal van $$$\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx$$$.
Oplossing
Zij $$$u=\cos{\left(x \right)}$$$.
Dan $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sin{\left(x \right)} dx = - du$$$.
Dus,
$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x}}} = {\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\left(- \sin{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\sin{\left(u \right)} d u}\right)}}$$
De integraal van de sinus is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- {\color{red}{\int{\sin{\left(u \right)} d u}}} = - {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
We herinneren eraan dat $$$u=\cos{\left(x \right)}$$$:
$$\cos{\left({\color{red}{u}} \right)} = \cos{\left({\color{red}{\cos{\left(x \right)}}} \right)}$$
Dus,
$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}$$
Voeg de integratieconstante toe:
$$\int{\sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} d x} = \cos{\left(\cos{\left(x \right)} \right)}+C$$
Antwoord
$$$\int \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)}\, dx = \cos{\left(\cos{\left(x \right)} \right)} + C$$$A