Integral de $$$\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt$$$.
Solução
Reescreva o integrando utilizando a fórmula do ângulo duplo $$$\sin\left(t \right)\cos\left(t \right)=\frac{1}{2}\sin\left( 2 t \right)$$$:
$${\color{red}{\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(t \right)} = \sin^{2}{\left(2 t \right)}$$$:
$${\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 t \right)} d t}}{4}\right)}}$$
Aplique a fórmula de redução de potência $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ com $$$\alpha=2 t$$$:
$$\frac{{\color{red}{\int{\sin^{2}{\left(2 t \right)} d t}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(t \right)} = 1 - \cos{\left(4 t \right)}$$$:
$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}{2}\right)}}}{4}$$
Integre termo a termo:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}}}{8} = \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(4 t \right)} d t}\right)}}}{8}$$
Aplique a regra da constante $$$\int c\, dt = c t$$$ usando $$$c=1$$$:
$$- \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{1 d t}}}}{8} = - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{t}}}{8}$$
Seja $$$u=4 t$$$.
Então $$$du=\left(4 t\right)^{\prime }dt = 4 dt$$$ (veja os passos »), e obtemos $$$dt = \frac{du}{4}$$$.
Assim,
$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{t}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$
Recorde que $$$u=4 t$$$:
$$\frac{t}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{t}{8} - \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{32}$$
Portanto,
$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}$$
Adicione a constante de integração:
$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}+C$$
Resposta
$$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt = \left(\frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}\right) + C$$$A