Integraal van $$$\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt$$$.

Oplossing

Herschrijf de integraand met behulp van de dubbelhoeksformule $$$\sin\left(t \right)\cos\left(t \right)=\frac{1}{2}\sin\left( 2 t \right)$$$:

$${\color{red}{\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(t \right)} = \sin^{2}{\left(2 t \right)}$$$:

$${\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 t \right)} d t}}{4}\right)}}$$

Pas de machtsreductieformule $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ toe met $$$\alpha=2 t$$$:

$$\frac{{\color{red}{\int{\sin^{2}{\left(2 t \right)} d t}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4}$$

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(t \right)} = 1 - \cos{\left(4 t \right)}$$$:

$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}{2}\right)}}}{4}$$

Integreer termgewijs:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}}}{8} = \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(4 t \right)} d t}\right)}}}{8}$$

Pas de constantenregel $$$\int c\, dt = c t$$$ toe met $$$c=1$$$:

$$- \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{1 d t}}}}{8} = - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{t}}}{8}$$

Zij $$$u=4 t$$$.

Dan $$$du=\left(4 t\right)^{\prime }dt = 4 dt$$$ (de stappen zijn te zien »), en dan geldt dat $$$dt = \frac{du}{4}$$$.

Dus,

$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$

De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{t}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$

We herinneren eraan dat $$$u=4 t$$$:

$$\frac{t}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{t}{8} - \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{32}$$

Dus,

$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}$$

Voeg de integratieconstante toe:

$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}+C$$

Antwoord

$$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt = \left(\frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}\right) + C$$$A


Please try a new game Rotatly