$$$\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt$$$.
Çözüm
Integrand ifadesini çift açı formülünü kullanarak yeniden yazın $$$\sin\left(t \right)\cos\left(t \right)=\frac{1}{2}\sin\left( 2 t \right)$$$:
$${\color{red}{\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}}$$
Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=\frac{1}{4}$$$ ve $$$f{\left(t \right)} = \sin^{2}{\left(2 t \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 t \right)} d t}}{4}\right)}}$$
Kuvvet indirgeme formülü $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$'i $$$\alpha=2 t$$$ ile uygula:
$$\frac{{\color{red}{\int{\sin^{2}{\left(2 t \right)} d t}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4}$$
Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(t \right)} = 1 - \cos{\left(4 t \right)}$$$ ile uygula:
$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}{2}\right)}}}{4}$$
Her terimin integralini alın:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}}}{8} = \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(4 t \right)} d t}\right)}}}{8}$$
$$$c=1$$$ kullanarak $$$\int c\, dt = c t$$$ sabit kuralını uygula:
$$- \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{1 d t}}}}{8} = - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{t}}}{8}$$
$$$u=4 t$$$ olsun.
Böylece $$$du=\left(4 t\right)^{\prime }dt = 4 dt$$$ (adımlar » görülebilir) ve $$$dt = \frac{du}{4}$$$ elde ederiz.
O halde,
$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{4}$$$ ve $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ile uygula:
$$\frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$
Kosinüsün integrali $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{t}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$
Hatırlayın ki $$$u=4 t$$$:
$$\frac{t}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{t}{8} - \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{32}$$
Dolayısıyla,
$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}$$
İntegrasyon sabitini ekleyin:
$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}+C$$
Cevap
$$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt = \left(\frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}\right) + C$$$A