Ολοκλήρωμα του $$$\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt$$$.
Λύση
Επαναγράψτε την ολοκληρωτέα χρησιμοποιώντας τον τύπο διπλής γωνίας $$$\sin\left(t \right)\cos\left(t \right)=\frac{1}{2}\sin\left( 2 t \right)$$$:
$${\color{red}{\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\frac{1}{4}$$$ και $$$f{\left(t \right)} = \sin^{2}{\left(2 t \right)}$$$:
$${\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 t \right)} d t}}{4}\right)}}$$
Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ με $$$\alpha=2 t$$$:
$$\frac{{\color{red}{\int{\sin^{2}{\left(2 t \right)} d t}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(t \right)} = 1 - \cos{\left(4 t \right)}$$$:
$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}{2}\right)}}}{4}$$
Ολοκληρώστε όρο προς όρο:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}}}{8} = \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(4 t \right)} d t}\right)}}}{8}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dt = c t$$$ με $$$c=1$$$:
$$- \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{1 d t}}}}{8} = - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{t}}}{8}$$
Έστω $$$u=4 t$$$.
Τότε $$$du=\left(4 t\right)^{\prime }dt = 4 dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = \frac{du}{4}$$$.
Επομένως,
$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{4}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{t}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$
Θυμηθείτε ότι $$$u=4 t$$$:
$$\frac{t}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{t}{8} - \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{32}$$
Επομένως,
$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}+C$$
Απάντηση
$$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt = \left(\frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}\right) + C$$$A