Integral de $$$\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt$$$.

Solución

Reescribe el integrando utilizando la fórmula del ángulo doble $$$\sin\left(t \right)\cos\left(t \right)=\frac{1}{2}\sin\left( 2 t \right)$$$:

$${\color{red}{\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}}$$

Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(t \right)} = \sin^{2}{\left(2 t \right)}$$$:

$${\color{red}{\int{\frac{\sin^{2}{\left(2 t \right)}}{4} d t}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 t \right)} d t}}{4}\right)}}$$

Aplica la fórmula de reducción de potencia $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ con $$$\alpha=2 t$$$:

$$\frac{{\color{red}{\int{\sin^{2}{\left(2 t \right)} d t}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4}$$

Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(t \right)} = 1 - \cos{\left(4 t \right)}$$$:

$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 t \right)}}{2}\right)d t}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}{2}\right)}}}{4}$$

Integra término a término:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 t \right)}\right)d t}}}}{8} = \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(4 t \right)} d t}\right)}}}{8}$$

Aplica la regla de la constante $$$\int c\, dt = c t$$$ con $$$c=1$$$:

$$- \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{1 d t}}}}{8} = - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{t}}}{8}$$

Sea $$$u=4 t$$$.

Entonces $$$du=\left(4 t\right)^{\prime }dt = 4 dt$$$ (los pasos pueden verse »), y obtenemos que $$$dt = \frac{du}{4}$$$.

Entonces,

$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{t}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$

Recordemos que $$$u=4 t$$$:

$$\frac{t}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{t}{8} - \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{32}$$

Por lo tanto,

$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}$$

Añade la constante de integración:

$$\int{\sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)} d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}+C$$

Respuesta

$$$\int \sin^{2}{\left(t \right)} \cos^{2}{\left(t \right)}\, dt = \left(\frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}\right) + C$$$A


Please try a new game Rotatly