Integral de $$$\frac{e^{\frac{1}{x^{3}}}}{x^{4}}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{e^{\frac{1}{x^{3}}}}{x^{4}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{e^{\frac{1}{x^{3}}}}{x^{4}}\, dx$$$.

Solução

Seja $$$u=x^{3}$$$.

Então $$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (veja os passos »), e obtemos $$$x^{2} dx = \frac{du}{3}$$$.

Assim,

$${\color{red}{\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x}}} = {\color{red}{\int{\frac{e^{\frac{1}{u}}}{3 u^{2}} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{3}$$$ e $$$f{\left(u \right)} = \frac{e^{\frac{1}{u}}}{u^{2}}$$$:

$${\color{red}{\int{\frac{e^{\frac{1}{u}}}{3 u^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}{3}\right)}}$$

Seja $$$v=\frac{1}{u}$$$.

Então $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (veja os passos »), e obtemos $$$\frac{du}{u^{2}} = - dv$$$.

Logo,

$$\frac{{\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}}}{3} = \frac{{\color{red}{\int{\left(- e^{v}\right)d v}}}}{3}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=-1$$$ e $$$f{\left(v \right)} = e^{v}$$$:

$$\frac{{\color{red}{\int{\left(- e^{v}\right)d v}}}}{3} = \frac{{\color{red}{\left(- \int{e^{v} d v}\right)}}}{3}$$

A integral da função exponencial é $$$\int{e^{v} d v} = e^{v}$$$:

$$- \frac{{\color{red}{\int{e^{v} d v}}}}{3} = - \frac{{\color{red}{e^{v}}}}{3}$$

Recorde que $$$v=\frac{1}{u}$$$:

$$- \frac{e^{{\color{red}{v}}}}{3} = - \frac{e^{{\color{red}{\frac{1}{u}}}}}{3}$$

Recorde que $$$u=x^{3}$$$:

$$- \frac{e^{{\color{red}{u}}^{-1}}}{3} = - \frac{e^{{\color{red}{x^{3}}}^{-1}}}{3}$$

Portanto,

$$\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - \frac{e^{\frac{1}{x^{3}}}}{3}$$

Adicione a constante de integração:

$$\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - \frac{e^{\frac{1}{x^{3}}}}{3}+C$$

Resposta

$$$\int \frac{e^{\frac{1}{x^{3}}}}{x^{4}}\, dx = - \frac{e^{\frac{1}{x^{3}}}}{3} + C$$$A


Please try a new game Rotatly