$$$\frac{e^{\frac{1}{x^{3}}}}{x^{4}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{e^{\frac{1}{x^{3}}}}{x^{4}}\, dx$$$.
Çözüm
$$$u=x^{3}$$$ olsun.
Böylece $$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (adımlar » görülebilir) ve $$$x^{2} dx = \frac{du}{3}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x}}} = {\color{red}{\int{\frac{e^{\frac{1}{u}}}{3 u^{2}} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(u \right)} = \frac{e^{\frac{1}{u}}}{u^{2}}$$$ ile uygula:
$${\color{red}{\int{\frac{e^{\frac{1}{u}}}{3 u^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}{3}\right)}}$$
$$$v=\frac{1}{u}$$$ olsun.
Böylece $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (adımlar » görülebilir) ve $$$\frac{du}{u^{2}} = - dv$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$\frac{{\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}}}{3} = \frac{{\color{red}{\int{\left(- e^{v}\right)d v}}}}{3}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=-1$$$ ve $$$f{\left(v \right)} = e^{v}$$$ ile uygula:
$$\frac{{\color{red}{\int{\left(- e^{v}\right)d v}}}}{3} = \frac{{\color{red}{\left(- \int{e^{v} d v}\right)}}}{3}$$
Üstel fonksiyonun integrali $$$\int{e^{v} d v} = e^{v}$$$:
$$- \frac{{\color{red}{\int{e^{v} d v}}}}{3} = - \frac{{\color{red}{e^{v}}}}{3}$$
Hatırlayın ki $$$v=\frac{1}{u}$$$:
$$- \frac{e^{{\color{red}{v}}}}{3} = - \frac{e^{{\color{red}{\frac{1}{u}}}}}{3}$$
Hatırlayın ki $$$u=x^{3}$$$:
$$- \frac{e^{{\color{red}{u}}^{-1}}}{3} = - \frac{e^{{\color{red}{x^{3}}}^{-1}}}{3}$$
Dolayısıyla,
$$\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - \frac{e^{\frac{1}{x^{3}}}}{3}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - \frac{e^{\frac{1}{x^{3}}}}{3}+C$$
Cevap
$$$\int \frac{e^{\frac{1}{x^{3}}}}{x^{4}}\, dx = - \frac{e^{\frac{1}{x^{3}}}}{3} + C$$$A