$$$\frac{e^{\frac{1}{x^{3}}}}{x^{4}}$$$ 的积分
您的输入
求$$$\int \frac{e^{\frac{1}{x^{3}}}}{x^{4}}\, dx$$$。
解答
设$$$u=x^{3}$$$。
则$$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (步骤见»),并有$$$x^{2} dx = \frac{du}{3}$$$。
所以,
$${\color{red}{\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x}}} = {\color{red}{\int{\frac{e^{\frac{1}{u}}}{3 u^{2}} d u}}}$$
对 $$$c=\frac{1}{3}$$$ 和 $$$f{\left(u \right)} = \frac{e^{\frac{1}{u}}}{u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{e^{\frac{1}{u}}}{3 u^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}{3}\right)}}$$
设$$$v=\frac{1}{u}$$$。
则$$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (步骤见»),并有$$$\frac{du}{u^{2}} = - dv$$$。
所以,
$$\frac{{\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}}}{3} = \frac{{\color{red}{\int{\left(- e^{v}\right)d v}}}}{3}$$
对 $$$c=-1$$$ 和 $$$f{\left(v \right)} = e^{v}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$:
$$\frac{{\color{red}{\int{\left(- e^{v}\right)d v}}}}{3} = \frac{{\color{red}{\left(- \int{e^{v} d v}\right)}}}{3}$$
指数函数的积分为 $$$\int{e^{v} d v} = e^{v}$$$:
$$- \frac{{\color{red}{\int{e^{v} d v}}}}{3} = - \frac{{\color{red}{e^{v}}}}{3}$$
回忆一下 $$$v=\frac{1}{u}$$$:
$$- \frac{e^{{\color{red}{v}}}}{3} = - \frac{e^{{\color{red}{\frac{1}{u}}}}}{3}$$
回忆一下 $$$u=x^{3}$$$:
$$- \frac{e^{{\color{red}{u}}^{-1}}}{3} = - \frac{e^{{\color{red}{x^{3}}}^{-1}}}{3}$$
因此,
$$\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - \frac{e^{\frac{1}{x^{3}}}}{3}$$
加上积分常数:
$$\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - \frac{e^{\frac{1}{x^{3}}}}{3}+C$$
答案
$$$\int \frac{e^{\frac{1}{x^{3}}}}{x^{4}}\, dx = - \frac{e^{\frac{1}{x^{3}}}}{3} + C$$$A