Integrale di $$$\frac{e^{\frac{1}{x^{3}}}}{x^{4}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{e^{\frac{1}{x^{3}}}}{x^{4}}\, dx$$$.
Soluzione
Sia $$$u=x^{3}$$$.
Quindi $$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (i passaggi si possono vedere »), e si ha che $$$x^{2} dx = \frac{du}{3}$$$.
Pertanto,
$${\color{red}{\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x}}} = {\color{red}{\int{\frac{e^{\frac{1}{u}}}{3 u^{2}} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(u \right)} = \frac{e^{\frac{1}{u}}}{u^{2}}$$$:
$${\color{red}{\int{\frac{e^{\frac{1}{u}}}{3 u^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}{3}\right)}}$$
Sia $$$v=\frac{1}{u}$$$.
Quindi $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (i passaggi si possono vedere »), e si ha che $$$\frac{du}{u^{2}} = - dv$$$.
Quindi,
$$\frac{{\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}}}{3} = \frac{{\color{red}{\int{\left(- e^{v}\right)d v}}}}{3}$$
Applica la regola del fattore costante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=-1$$$ e $$$f{\left(v \right)} = e^{v}$$$:
$$\frac{{\color{red}{\int{\left(- e^{v}\right)d v}}}}{3} = \frac{{\color{red}{\left(- \int{e^{v} d v}\right)}}}{3}$$
L'integrale della funzione esponenziale è $$$\int{e^{v} d v} = e^{v}$$$:
$$- \frac{{\color{red}{\int{e^{v} d v}}}}{3} = - \frac{{\color{red}{e^{v}}}}{3}$$
Ricordiamo che $$$v=\frac{1}{u}$$$:
$$- \frac{e^{{\color{red}{v}}}}{3} = - \frac{e^{{\color{red}{\frac{1}{u}}}}}{3}$$
Ricordiamo che $$$u=x^{3}$$$:
$$- \frac{e^{{\color{red}{u}}^{-1}}}{3} = - \frac{e^{{\color{red}{x^{3}}}^{-1}}}{3}$$
Pertanto,
$$\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - \frac{e^{\frac{1}{x^{3}}}}{3}$$
Aggiungi la costante di integrazione:
$$\int{\frac{e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - \frac{e^{\frac{1}{x^{3}}}}{3}+C$$
Risposta
$$$\int \frac{e^{\frac{1}{x^{3}}}}{x^{4}}\, dx = - \frac{e^{\frac{1}{x^{3}}}}{3} + C$$$A