Eenheidsvector in de richting van $$$\left\langle 7, 2 t, 3 t^{2}\right\rangle$$$
Uw invoer
Vind de eenheidsvector in de richting van $$$\mathbf{\vec{u}} = \left\langle 7, 2 t, 3 t^{2}\right\rangle$$$.
Oplossing
De norm van de vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{9 t^{4} + 4 t^{2} + 49}$$$ (voor de stappen, zie calculator voor de vectornorm).
De eenheidsvector wordt verkregen door elke coördinaat van de gegeven vector te delen door de norm.
Dus is de eenheidsvector $$$\mathbf{\vec{e}} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle$$$ (voor de stappen, zie rekenmachine voor vermenigvuldiging van een vector met een scalair).
Antwoord
De eenheidsvector in de richting van $$$\left\langle 7, 2 t, 3 t^{2}\right\rangle$$$A is $$$\left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle = \left\langle \frac{7}{\left(9 t^{4} + 4 t^{2} + 49\right)^{0.5}}, \frac{2 t}{\left(9 t^{4} + 4 t^{2} + 49\right)^{0.5}}, \frac{3 t^{2}}{\left(9 t^{4} + 4 t^{2} + 49\right)^{0.5}}\right\rangle.$$$A