Integraal van $$$\sec^{2}{\left(x y \right)}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sec^{2}{\left(x y \right)}\, dx$$$.
Oplossing
Zij $$$u=x y$$$.
Dan $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{y}$$$.
De integraal kan worden herschreven als
$${\color{red}{\int{\sec^{2}{\left(x y \right)} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{y}$$$ en $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}} = {\color{red}{\frac{\int{\sec^{2}{\left(u \right)} d u}}{y}}}$$
De integraal van $$$\sec^{2}{\left(u \right)}$$$ is $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{y} = \frac{{\color{red}{\tan{\left(u \right)}}}}{y}$$
We herinneren eraan dat $$$u=x y$$$:
$$\frac{\tan{\left({\color{red}{u}} \right)}}{y} = \frac{\tan{\left({\color{red}{x y}} \right)}}{y}$$
Dus,
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}$$
Voeg de integratieconstante toe:
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}+C$$
Antwoord
$$$\int \sec^{2}{\left(x y \right)}\, dx = \frac{\tan{\left(x y \right)}}{y} + C$$$A