$$$\sec^{2}{\left(x y \right)}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \sec^{2}{\left(x y \right)}\, dx$$$。
解答
令 $$$u=x y$$$。
則 $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{y}$$$。
該積分變為
$${\color{red}{\int{\sec^{2}{\left(x y \right)} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{y}$$$ 與 $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}} = {\color{red}{\frac{\int{\sec^{2}{\left(u \right)} d u}}{y}}}$$
$$$\sec^{2}{\left(u \right)}$$$ 的積分是 $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{y} = \frac{{\color{red}{\tan{\left(u \right)}}}}{y}$$
回顧一下 $$$u=x y$$$:
$$\frac{\tan{\left({\color{red}{u}} \right)}}{y} = \frac{\tan{\left({\color{red}{x y}} \right)}}{y}$$
因此,
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}$$
加上積分常數:
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}+C$$
答案
$$$\int \sec^{2}{\left(x y \right)}\, dx = \frac{\tan{\left(x y \right)}}{y} + C$$$A