Integral of $$$\sec^{2}{\left(x y \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sec^{2}{\left(x y \right)}\, dx$$$.
Solution
Let $$$u=x y$$$.
Then $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{y}$$$.
The integral can be rewritten as
$${\color{red}{\int{\sec^{2}{\left(x y \right)} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{y}$$$ and $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}} = {\color{red}{\frac{\int{\sec^{2}{\left(u \right)} d u}}{y}}}$$
The integral of $$$\sec^{2}{\left(u \right)}$$$ is $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{y} = \frac{{\color{red}{\tan{\left(u \right)}}}}{y}$$
Recall that $$$u=x y$$$:
$$\frac{\tan{\left({\color{red}{u}} \right)}}{y} = \frac{\tan{\left({\color{red}{x y}} \right)}}{y}$$
Therefore,
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}$$
Add the constant of integration:
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}+C$$
Answer
$$$\int \sec^{2}{\left(x y \right)}\, dx = \frac{\tan{\left(x y \right)}}{y} + C$$$A