Integrale di $$$\sec^{2}{\left(x y \right)}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \sec^{2}{\left(x y \right)}\, dx$$$.
Soluzione
Sia $$$u=x y$$$.
Quindi $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{y}$$$.
Quindi,
$${\color{red}{\int{\sec^{2}{\left(x y \right)} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{y}$$$ e $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}} = {\color{red}{\frac{\int{\sec^{2}{\left(u \right)} d u}}{y}}}$$
L'integrale di $$$\sec^{2}{\left(u \right)}$$$ è $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{y} = \frac{{\color{red}{\tan{\left(u \right)}}}}{y}$$
Ricordiamo che $$$u=x y$$$:
$$\frac{\tan{\left({\color{red}{u}} \right)}}{y} = \frac{\tan{\left({\color{red}{x y}} \right)}}{y}$$
Pertanto,
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}$$
Aggiungi la costante di integrazione:
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}+C$$
Risposta
$$$\int \sec^{2}{\left(x y \right)}\, dx = \frac{\tan{\left(x y \right)}}{y} + C$$$A